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A Reynolds stress model for near-wall turbulence 
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A tensorially consistent near-wall second-order closure model is formulated. 
Redistributive terms in the Reynolds stress equations are modelled by an elliptic 
relaxation equation in order to represent strongly non-homogeneous effects produced 
by the presence of walls; this replaces the quasi-homogeneous algebraic models that are 
usually employed, and avoids the need for ad hoc damping functions. A quasi- 
homogeneous model appears as the source term in the elliptic relaxation equation - 
here we use the simple Rotta return to isotropy and isotropization of production 
formulae. The formulation of the model equations enables appropriate boundary 
conditions to be satisfied. 

The model is solved for channel flow and boundary layers with zero and adverse 
pressure gradients. Good predictions of Reynolds stress components, mean flow, skin 
friction and displacement thickness are obtained in various comparisons to 
experimental and direct numerical simulation data. 

The model is also applied to a boundary layer flowing along a wall with a 90°, 
constant-radius, convex bend. Because the model is of a general, tensorially invariant 
form, special modifications for curvature effects are not needed; the equations are 
simply transformed to curvilinear coordinates. The model predicts many important 
features of this flow. These include: the abrupt drop of skin friction and Stanton 
number at the start of the curve, and their more gradual recovery after the bend; the 
suppression of turbulent intensity in the outer part of the boundary layer; a region of 
negative (counter-gradient) Reynolds shear stress ; and recovery from curvature in the 
form of a Reynolds stress ‘bore ’ propagating out from the surface. A shortcoming of 
the present model is that it overpredicts the rate of this recovery. 

A heat flux model is developed. It is shown that curvature effects on heat transfer can 
also be accounted for automatically by a tensorially invariant formulation. 

1. Introduction 
Transport of heat and momentum to a surface beneath a turbulent boundary layer 

is controlled largely by a region immediately next to the surface. The proximate 
boundary suppresses the normal component of turbulent intensity within this region 
(Hunt & Graham 1978), thereby reducing mixing and making the near-wall region one 
of high impedance to heat and momentum transfer between the boundary and fluid. 
By ‘near-wall’, we are referring to what is called the law-of-the-wall layer in a zero- 
pressure-gradient boundary layer. It is where the turbulent kinetic energy is maximum 
and is the primary area of turbulence production; in every respect, it is a crucial 
portion of the turbulent boundary layer. However, this near-wall region has proven 
rather an anathema to turbulence modellers. 

The objective of near-wall turbulence closure modelling is to formulate a set of 
differential equations which can be solved for single-point turbulence statistics in a 



466 P. A.  Durbin 

region of the flow which extends to the wall and includes the crucial law-of-the-wall 
layer. Boundary conditions to the model are then imposed at the wall. This is in 
contrast to the ‘wall function’ approach, in which boundary conditions are replaced 
by matching conditions to a logarithmic layer - hence, assuming that the logarithmic 
layer exists and has a universal form and, implicitly, that the law-of-the-wall region is 
also universal. The objective of the near-wall model is to be more flexible, and not to 
require any such assumption of universal behaviour. In many non-equilibrium flows, 
such as a boundary layer subjected to a large pressure gradient or to substantial surface 
curvature, the near wall-turbulence is not of a universal form. 

The distinctive features of turbulence in the region immediately adjacent to a smooth 
surface are strong inhomogeneity and large anisotropy. Virtually all previous models 
for the near-wall region have used isotropic or quasi-homogeneous assumptions in 
some significant aspect of their formulation. Such formulations produce solutions 
which are strikingly at odds with experiment - as could be expected. So-called 
‘damping functions’ are then introduced to correct this erroneous behaviour of the 
basic model (Patel, Rodi & Scheurer 1985; Hanjalic & Launder 1976). The damping 
function adjusts the model solution to fit a particular data set; but by its nature, it 
removes the flexibility that the differential equations of the model were meant to 
provide : essentially, the assumption of a universal damping function is analogous to 
the universality invoked in the wall function method. The failure of the universal wall- 
layer assumption is illustrated by Rodi & Scheurer (1986) : they show how a damping 
function which fits a model to zero-pressure-gradient boundary-layer data gives 
incorrect behaviour in an adverse pressure gradient. In consequence of having 
examined both these quasi-homogeneous or isotropic types of model, and a wealth of 
near-wall direct numerical simulation (DNS) data (Mansour, Kim & Moin (1988), it 
seems clear that the substantial corrections which damping functions must make are 
required because the models have neglected crucial aspects of inhomogeneity and 
anisotropy of the near-wall turbulence. While it may not be obvious how these aspects 
can be represented by model differential equations, attempts in that direction certainly 
are warranted. The present paper is part of a research programme in which we eschew 
the damping function route, and instead attempt to incorporate near-wall effects of 
inhomogeneity and anisotropy into the governing equations. 

The original basis of our approach is set out in Durbin (1991), upon which we rely 
heavily. That paper describes a version of the model which uses an eddy viscosity for 
mean momentum transport (the k--E-2 version). It was applied to boundary layers 
and heat transfer in Durbin (1992). The present paper develops a full, tensorially 
invariant, Reynolds stress closure. The simpler version produced excellent results in 
channel and boundary-layer flow, including moderate adverse pressure gradients ; 
however, when the pressure rise of the adverse pressure gradient is sufficient to drive 
the skin friction near to zero, the eddy-viscosity approximation causes the boundary 
layer to grow too rapidly, as will be illustrated here. Presumably this is because the 
eddy-viscosity approximation ignores the effect of upstream history upon the Reynolds 
shear stress. By carrying a differential equation for Reynolds shear stress we obtain 
considerably better results for the adverse-pressure-gradient boundary layer with large 
pressure rise. 

Another advantage of the coordinate-independent Reynolds stress closure is that it 
can be applied to non-planar boundary layers. Here we present computations of a 
boundary layer on a convexly curved surface. Surface curvature has a pronounced 
effect on attached turbulent boundary layers. Bradshaw (1973) reviews the history of 
the subject: it appears that, about 1930, Prandtl deduced theoretically that curvature 
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would have a disproportionately small effect. However, this deduction was promptly 
disproved by his student, Wilcken, who showed experimentally that the effect was 
disproportionately large. A coefficient in a modified mixing-length formula which 
Prandtl had inferred to be f was found experimentally to be more than a factor of 10 
larger (Johnston 1978). 

If R, is the surface radius of curvature and 6 the 99% thickness of the boundary 
layer, then 6/R, 2 0.05 is considered to be strong curvature (Gillis et al. 1980). The 
smallness of this parameter is misleading : the relevant comparison is between the rates 
of curvature and shear production of turbulent kinetic energy, which is characterized 
by SUJR, u* in law-of-the-wake scaling; under strong curvature this parameter is 
O(1). In law-of-the-wall scaling, the ratio of curvature to shear is of order v/R,u*, 
which is small in high-Reynolds-number flow. Thus, curvature has insignificant direct 
effect on the viscous wall layer; but it does have a significant indirect effect through the 
communication between the wall and outer regions. For instance, the skin friction falls 
abruptly as a boundary layer enters a region of strong convex curvature, even though 
skin friction is a viscous effect. 

Other effects of strong convex curvature include : suppression of turbulent intensity 
throughout the boundary layer, although most notably in the outer half; decrease of 
the Reynolds shear stress, to the extent that in the outer half of the layer it can be 
driven negative, producing ‘ counter-gradient ’ transport; and an apparent reorgan- 
ization of the boundary-layer turbulence, which persists in the flat-plate boundary 
layer downstream of a curved section (Gillis et al. 1980). The persistent effects include 
lowered skin friction, which led Bushnell (1983) to propose that convex curvature 
might be a practical means of drag reduction. These characteristic features of convex 
curvature make the curved-wall turbulent boundary layer an intriguing flow to 
compute with a turbulence model. 

Mathematically, the effects of curvature are described by metric terms in the 
governing equations of motion - or, strictly, these metric terms and the assumption 
that the boundary layer remains attached. (The assumption of attached flow is the 
Occam’s razor of boundary-layer theory : if the boundary-layer solution is not singular, 
it is supposed that the flow remains attached.) The metric terms couple components of 
the Reynolds stress tensor: for example, the curvature term in the &equation is 
proportional to m. Simplified models, such as mixing length or k- 6 ,  which contain no 
explicit representation of the turbulence anisotropy cannot automatically account for 
the effects of curvature; if such effects are to be included they must be added ex post 
facto. By contrast, Reynolds stress models have the potential to account for curvature 
without requiring any modification to their equations. 
- Metric terms also enter the equations for the heat-flux tensor -Q; they couple the 
u0 and 8 equations. Again this produces a curvature effect which is not included in 
simple models, such as eddy diffusion. We will formulate a Reynolds heat-flux model, 
so that curvature effects again arise naturally from transformation of the coordinate 
system. The explicit curvature terms in the heat-flux equations are additional to the 
implicit effects due to curvature in the Reynolds stress equations. Thus, curvature 
affects heat transfer both indirectly, by modifying turbulent convective transport, and 
directly by ‘Coriolis’ terms which interchange x- and y-components of heat flux. 
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2. Themodel 
The exact Reynolds stress transport equation can be written 

where &j = - G U k k  U j - u j a a ,  ui 
is the rate of turbulence production by mean velocity gradients, 

is the redistribution tensor; and Dt( . )  is the convective derivative following the mean 
flow. Note that the Rotta model for anisotropic dissipation, -ii&c/k, has been added 
to (1) and subtracted from ( 3 ) :  among other virtues, this has the effect of making 
vanish at rigid, no-slip boundaries. By definition E = ;cij is the rate of dissipation of 
turbulent kinetic energy (k) .  The ‘pressure transport’, -ak-, has also been added to 
(1) and subtracted from (3) :  this is done to make (3)  redistributive. 

In the notation of (3)  all unclosed terms have been incorporated into hij, except for 
the transport terms. We follow the usual practice of modelling turbulent self-transport 
by gradient diffusion (Launder 1989): 

This amounts to regarding ii& as a ‘substance’ being transported by the turbulent 
velocity ul. The diffusional model is as much a representation of the smoothing effect 
of ensemble averaging as of convective transport per se: this is why the model is 
parabolic rather than hyperbolic. For the eddy viscosity 

vTlj = Cpii& T ( 5 )  

will be used. In (4) we follow the convention of writing the eddy viscosity for turbulent 
transport of Reynolds stress in the form vT/a,, where rk  is a constant Prandtl number. 
For the timescale T we adopt (Durbin 1991) 

This becomes k / c  far from boundaries. Near a surface where k-tO it becomes the 
Kolmogoroff timescale CT(v/e)i, which is a suitable lower bound on T. The pressure 
transport term in (1) and (3)  is usually small (Mansour et al. 1988) and will be set to 
zero; a frequently given justification for dropping this term is that it is assumed to be 
absorbed into the transport model (4). 

A second-order closure for kij is simply a proposed relationship between this 
unknown and the dependent variable of equation (l), ii&. In all closures to date, this 
relationship has consisted of algebraic formulae. However, those formulae are based 
on quasi-homogeneous assumptions - most notably in the rapid pressure-strain 
tern-which are incorrect in the strongly inhomogeneous near-wall region (Bradshaw, 
Mansour & Piomelli 1987). It is suggested in Durbin (1991) that elliptic effects within 
the flow, which are caused by the proximity of a boundary, might be included by 
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formulating an elliptic relaxation model for +iij. The elliptic effects are blocking of the 
normal velocity (the ‘image vortex’ effect: Hunt & Graham 1978) and pressure 
reflection from the surface. Because these are inherently non-local effects, which cannot 
appear explicitly in any single-point model, they are represented quite indirectly by the 
present model. 

Occasionally, wall effects have been introduced by using the unit wall normal 
explicitly in formulae for turbulence properties interior to the fluid (Launder 1989). Of 
course, the wall normal is only defined at the wall, so this is an ambiguous procedure. 
An elliptic model provides a more natural way to let the wall effects appear : they enter 
through boundary conditions, and the model relaxes to quasi-homogeneous behaviour 
in the interior, far from the boundary. Wall effects then enter via solution at the 
governing equations, rather than via prescribed damping function profiles. 

The elliptic relaxation model proposed by Durbin (1991) can be put into coordinate- 
independent form and written 

+i.. 23 = k f . .  7 

L”2f.. 21 - f . .  83 = - n... 83 

(7) 

(8) 

The lengthscale L is formulated by analogy to (6): 

L =  C,max (Y -,C7 (VJ) - . 
(9) 

(A word of caution: near the free-stream edge of a boundary layer, G -+ 0 and the 
second factor in (9) can become large. For this reason, L = C, k2/s should probably be 
used in place of (9) in the outermost regions of a boundary layer. However, (9) was 
used throughout the flow in the present computations, with no adverse effects.) 
Boundary conditions can be imposed on (8) to represent non-homogeneous effects of 
the wall. The boundary conditions influence the solution in the interior of the flow 
through the homogeneous solutions to (8). Far from the surface these solutions decay, 
and the& relax to quasi-homogeneity, as represented by a balance of the second term 
on the left-hand side with the right-hand side. 

An heuristic justification for (8), starting from the Poisson equation for pressure, is 
described in Appendix A. Ultimately, the motivation for (8) is simply a notion that 
non-local, elliptic effects - like kinematic blocking and pressure reflection - might 
indirectly be represented by an elliptic model equation. An exact representation of such 
processes would require knowledge of two-point correlations ; this is why the real, fluid 
dynamical elliptic effects enter the present model indirectly at best. 

The form (7) for & was introduced, makingf, the dependent variable in (S), in order 
to enforce the condition #itj(0) = 0. The factor of k causes 2 to be of order y4 as y-+ 
0 ~ see $3 and Durbin (1991). 

In the quasi-homogeneous limit (7) and (8) reduce to 

For Z7, any quasi-homogeneous model can be used. Here we adopt the simple model 
recommended by Launder (1989). This consists of a sum of Rotta’s return to isotropy 
and the isotropization of production models : 

where 2P = pii, and is given by (2). C, is the usual Rotta constant. The last two 



410 P .  A.  Durbin 

terms of (3) require that unity be subtracted from C, as in (1 1). Far from the surface, 
the model for +hi, then relaxes to a quasi-homogeneous form with C, appearing as the 
standard Rotta constant and si< replaced by the isotropic form 2/38,, s. 

One half the trace of (1) (obtained by setting i = j and summing) is the kinetic energy 
equation : 

D , k =  P-s+al VS +% a,k, ( lrn 

which may be solved in place of one of equations (1). As mentioned previously, 
l/pai (uip) was omitted - or absorbed into the eddy diffusive transport - in (12). 

Equation (12) is not coupled to an elliptic equation; however, it is coupled to an 
equation for E ,  again forming a fourth-order system of equations. We adopt the 
standard s-model (Patel et al. 1985) 

+a, ( vs k l  +- 2:) ale. c; P- cc, 6 

T 
D,e = 

Here Cz = Gel( 1 +a, P/e)  was made a function of P/e to account for the anisotropic 
production terms in the near wall region (Durbin 1992; Durbin & Speziale 1991); 
otherwise the constants have their usual meanings. The system of equations (12) and 
(13) is subject to the no-slip condition k = auk = 0 on boundaries, where y denotes the 
direction normal to the surface. Note that we do not need boundary conditions on s: 
the conditions on k and its normal derivative are sufficient to obtain both k and e by 
solving the fourth-order system, (12) and (13). 

Values of the model constants are quite similar to those given in Patel et al. (1985), 
Launder (1989) and Durbin (1992). Thus, for the k-s system (12) and (13) with (6) 

C., = 1.44; Cez = 1.9; o;, = 1.2; qe = 1.65; C, = 0.23;  U, = 0.1 ( 1 4 ~ )  

are used. The constants appearing in the length and time scales T and L are set to 

C, = 6.0; C, = 0.2; C, = 80.0. (14b) 

The primary purpose for using the Kolmogoroff scale as a lower bound on Tin (6) is 
to avoid a singularity at y = 0 in the first term on the right-hand side of (13). The value 
of C, = 6 was determined in Durbin (1991) by reference to DNS data, and shown to 
produce the correct behaviour of E near a wall. The other constants were determined 
by comparing model predictions of the normal component of turbulent intensity (3) 
to data. The constants in (1 1) are chosen as 

C, = 1.22; C, = 0.6. (144  

The second constant is set to the standard value derived from perturbation of isotropy 
(Launder 1989). The first is a bit lower than usual for the Rotta return to isotropy 
constant. Experiments on the rate of return to isotropy do not provide a unique value 
(Lumley & Newman 1977); indeed, as the turbulence tends toward two-dimensionality, 
C, tends toward unity. Near-wall turbulence tends toward two-dimensionality as the 
surface is approached, so the slower rate of return implied by (14c) is not unwarranted. 
Indeed, it has been suggested that C, be made a function of the invariants of the 
Reynolds stress tensor that becomes unity in two-component turbulence : the value of 
unity is suggested by realizability constraints (Lumley & Newman 1977). 

In computations not shown here C, was set to 1.5 and a, to 0.05. These values are 
more consistent with those used in free-shear layer models. The agreement between 
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experiment and model was only slightly worse than that shown here; 1.5 and 0.05 are 
satisfactory values. Clearly, leeway exists for reaching a compromise between wall- 
bounded and free-shear flows. 

3. Boundary conditions 
Boundary conditions to the model equations are derived from an examination of the 

near-wall behaviour of their solutions. The no-slip condition causes k to tend to sy2/2v 
as y+O. By its definition (3) and no-slip at the wall, +iii is O(y) .  If the pressure 
transport term is omitted and i and j  are both in the normal direction, kij will be O( y’). 
It follows that in the viscous layer immediately next to the wall, the dominant balance 
of terms in (1) is 

This represents a balance between molecular diffusion and anisotropic dissipation. The 
solution to (15) is 

ii& = Aij y2 + Bi j / y  + Ob’), 

where Aij  and Bij are integration constants determining the magnitude of homogeneous 
solutions to the differential equation. The no-slip condition causes tangential velocity 
components to go to zero like O(y), while the normal component is #(y2), by 
continuity. Hence, if i or j correspond to the normal direction i@ij = o(y2)), so the 
proper boundary condition is to require 

Aij = B, = 0, i o r j  in normal direction. 

B, = 0, i and j in tangential direction (17) 

(16) 

If i a n d j  both correspond to tangential directions, then ii& = O(y2) ,  so only 

is required of (1). Equations (1) and (8) provide a fourth-order system of equations for 
each ii&. Thinking of flow in a channel with two boundaries, one sees that (1 6) applied 
at each wall gives the appropriate number of boundary conditions (that is, four 
conditions for the fourth-order system). For tangential components, a condition 
additional to (17) is required at each wall. At present, that additional condition is 
somewhat uncertain. From the numerical computations described later, we surmise 
thatLj = 0 for i andj  tangential may often be the appropriate condition; however, this 
matter must be discussed further. 

Consider first the k-t. system of equations, (12) and (13). This system requires four 
boundary conditions. The no-slip condition k = auk = 0 at the walls of a channel 
imposes all four conditions on k. The surface value of e floats to whatever value is 
required. Indeed, it is a rather remarkable property of the s-equation that, when solved 
in this manner, it produces a sharp rise in e near the wall, with a peak at the wall, in 
agreement with DNS data. The magnitude and Reynolds-number dependence of this 
peak are reproduced quite reasonably by the model (Durbin 1991). 

Similarly, because each ii& - #. . pair of equations forms a coupled, fourth-order 
system, four conditions imposed on ui uj make their solution determinate. With Bij = 0 
and A ,  specified at the boundaries, the value offij at the wall and the homogeneous 
solutions to (8) would be determined implicitly by the solution to the complete set of 
model equations. The application of boundary conditions (16) to the systems of 

~ J -  
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equations for UV and 3 in channel flow is a case in point: the homogeneous solutions 
to (8) are determined implicitly by the process of solving the model equations with 
boundary conditions only on the velocities - as was discussed in the preceding 
paragraph. It will be found in the next section that, in this manner, conditions (16) 
produce eminently reasonable results. As explained in Durbin (199 l), the homogeneous 
solution to (8) counteracts the particular solution, forced by its right-hand side, thereby 
modelling the blocking effect of the wall. 

However, there is no means for prescribing tangential components such as All; in 
fact A,,  is equal to e11/2v evaluated at the wall. This cannot be prescribed a priori. If 
A,, were prescribed, the homogeneous solutions to the f,,-equation would again 
counteract the particular solution, causing an erroneous blocking effect on the 
tangential component; blocking should only suppress the normal component. A 
suitable condition seems to be that f , ,  = 0 at the wall; this condition causes the 
homogeneous solution of (8) to vanish, thus avoiding spurious suppression of the 
tangential component. As will be seen, this boundary condition in conjunction with 
(17) produces a satisfactory solution for 2. The solution for 2, as found from 2 = 
2k - u" - v", will also be found satisfactory. 

In general the k-equation and only two of the diagonal components of the Reynolds 
stress equations need be solved. Thus, the above considerations on boundary 
conditions suffice to make the model solutions determinate. However, those 
observations give rise to a slight dilemma : the contraction of the modelled form of (1) 
must give the k-equation (12). This requires that the contraction of +iij vanish. The 
model (11) was formulated so that it contracts to 0; hence (8) contracts to 

L2V2hi-fii = 0. 

The solution to this will be identically zero, as required in the k-equation, ifhi = 0 on 
the boundaries. Since f,, = 0 appears to be a suitable boundary condition, the 
implication is thatf,, = -fzz would be the boundary condition on the U$-+i3, system 
of equations. Thus, the tangential condition seems not to be as simple as settingLj = 0 
for i a n d j  tangential. This is a puzzle which at present we cannot solve; nor need we, 
because the a equation will not be used. Since 2 is small near the wall, and blocking 
effects do not occur in the k- or 3-equations, it would seem that the present 
formulation will not cause spurious blocking of 9. Hence, the dilemma just cited is one 
of principle, but it causes no practical difficulty. 

4. Calculations of channel flow and flat-plate boundary layers 
The ideal flow for developing a near-wall turbulence model is the two-dimensional 

channel flow: this flow is statistically homogeneous in planes parallel to the walls, so 
fhe turbulence statistics are functions of the cross-stream coordinate y alone. A wealth 
of numerical and experimental data are available for this flow. The constants for the 
present model were determined by comparing numerical solutions of the model 
equations to DNS data of Dr J. Kim (1990, private communication). These DNS data 
were computed in a channel with Reynolds number based on friction velocity and 
channel half-height equal to 395. We will also present results for two-dimensional 
boundary layers. In both cases the model equations were solved by a semi-implicit, 
parabolic marching scheme ; in the channel this marching converged to the steady-state 
solution. The boundary-layer equations were obtained by the usual procedure of 
consistently dropping x-derivatives of a given quantity in comparison to y-derivatives 
of that quantity. 
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FIGURE 1. (a)  Cornparkon of modelQnes) to DNS (symbols) profiles of Reynolds stresses in channel 
flow at R, = 395: +, 2;  x ,  k ;  A, we; 0,  z; B, -iiij. (b) The behaviour adjacent to the wall, and 
the y2 and y4 asymptotic limits: a, k ;  x , v2. 

The G, and mu,-components of (1) were solved, while the last, us, 
component was determined from the definition 2k = a, into which the solutions for 
k and the other two normal stress components were substituted. 

Figure 1 shows a numerical solution to the model for channel flow at a friction- 
velocity Reynolds number of R, = 395. The four non-zero components of the Reynolds 
stress tensor and the kinetic energy are shown. The model solution is represented by 
the curves and DNS data provided by Dr J. Kim (private communication) are shown 
by the symbols. Wall units are used so the turbulent intensities are normalized by the 

16 FLM 249 
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FIGURE 2. Mean velocity profiles in wall units, DNS data: x , R, = 180; +, R, = 395. The profile 
for RT = 180 has been displaced by 5 units for legibility. 

kinematic wall stress, u:, and the y-coordinate by u/u*.  It is seen that in the near-wall 
region, y+ < 100, all components of the Reynolds stress tensor behave correctly: this 
includes the peaking of 2 and k, the suppression of 3 for y+ < 40 and the rise of -uV 
to its maximum at about y+ = 40. The maximum of -uU is less than unity due to the 
smallness of the Reynolds number. In figure 4, for a boundary layer at considerably 
higher Reynolds number, it will be seen that -uU reaches a maximum value of unity. 
Hence, one sees that suitable Reynolds-number dependence is captured by the model 
without introducing any such dependence explicitly into its coefficients ; the Reynolds- 
number dependence comes from the exact viscous terms. At the largest values of y+, 
corresponding to the central portion of the channel, 2 falls below the data, although 
the other components are in reasonable agreement with the data. A similar level of 
agreement to that shown by figure 1 was obtained at the lower value R, = 180, 
although the tendency of 2 to fall too low at the centre of the channel was exacerbated. 

In the lower portion of figure 1 (b), k and 2 are shown on logarithmic axes so that 
their approach to the limiting y ;  and y: forms can be seen. This figure illustrates how 
the numerical solution is consistent with the analysis in 93. 

Figure 2 shows mean flow profiles at both R, = 180 and 395. The value of U+ at the 
largest y+, which corresponds to the centre of the channel, determines the skin-friction 
coefficient. The model predicts this coefficient and its Reynolds-number dependence 
quite well. The mean velocity profile shows some discrepancy with the data for y+ 
around 100, corresponding to the logarithmic region, but is generally of reasonable 
form. The log-law plays no direct role in the present model because the equations are 
solved to the surface; hence the small differences between model and data in the 
logarithmic region are not crucial. The simplified model of Durbin (1992) fitted the 
logarithmic region quite well. 
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FIGURE 3. Friction coefficient in a zero-pressure-gradient boundary layer versus momentum- 

thickness Reynolds number. Experimental data is from Coles & Hirst; solid line is present model. 

For flat-plate boundary layers, the mean x-momentum equation is 

1 

P 
D, u = --a,g+a,(va, u-uv). 

This is solved for a prescribed pressure distribution P(x), along with the continuity 
equation a, U+a, V = 0, Equation (18) requires a solution only to the U,-component 
of (1); however, e2 and 17,, contain 3, so the vu,-component  must also be solved. 
The boundary conditions to these equations are given in (16). For flat-plate boundary 
layers (12) and (13) are also solved; this provides a closed set of equations - there is no 
need to solve the other components of the Reynolds stress equation. 

Free-stream boundary conditions are required for boundary-layer computations. It 
is widely known that k-e, and similar transport equation models are erroneous in the 
outermost part of a boundary layer. The most obvious flaw is that they cause k to go 
to zero at some finite point (Kline et al. 1968, p. 327), instead of having a yP4 decay at 
large y .  Because of this, we have followed the common pragmatism of allowing a small 
level of ‘free-stream turbulence’. Thus, k = 10-5U& is imposed at the topmost grid 
point. Computed results seem to be insensitive to this low level of free-stream 
turbulence. The other components of the Reynolds stress tensor at the free-stream are 
set by isotropy: 3 = ik; UV = 0. The rest of the free-stream boundary conditions were 
aV E = 0, = 0 andf,, = 0 (these were also the conditions imposed by symmetry at 
the centreline of the previous channel flow case). Aside from using suitable free-stream 
conditions for the boundary layer, and suitable symmetry conditions at the channel 
centreline, the model, including values of the constants, was identical for all 
calculations. 

Figure 3 shows model solutions for friction coefficient C, versus momentum- 
thickness Reynolds number R ,  in a zero-pressure-gradient boundary layer, compared 
to experimental data (Coles & Hirt 1968). The level of agreement is good, and similar 
to that obtained with the simpler k-e-3 version (Durbin 1992). It is quite significant 
that the correct Reynolds-number dependence has been predicted : this dependence 
arises largely through the exact viscous term in (1); the model contains no explicit 
functions of Reynolds number, so the result in figure 3 is an honest prediction of the 

16-2 
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FIGURE 4. Profiles of k (a), 3 ( x )  and - - ~ i ~ i  (+) at R, = 7150 in a zero-pressure-gradient 
boundary layer. Experimental data were transcribed from Klebanoff. 

model. The Reynolds-number dependence is simply a property of the model equations. 
Although near-wall modelling is sometimes misleadingly referred to as ' low-Reynolds 
number modelling ', in fact the Reynolds-number dependence arises in a natural way; 
the modelling has to address the issues of inhomogeneity and anisotropy. 

Figure 4 shows k, v" and -uV normalized by u:, versus y/S,,. The model solution 
and data from Klebanoff (1955) are for R, = 7150; one sees that at this Reynolds 
number the normalized Reynolds shear stress reaches a maximum value of unity. ;;" is 
somewhat overpredicted. In the simpler version of the model (Durbin 1992) 3 was 
more accurately predicted, but it also played a more essential role: there it determined 
the behaviour of the eddy viscosity in the mean momentum equation; here it influences 
the Reynolds shear stress through the production term in the =-equation. The kinetic 
energy has an appropriate, peaked form near the surface, although it is slightly below 
the data. k lies above the data in the outermost portion of the boundary layer. 

The results so far show the viability of the present model; but as good results were 
obtained with the k-e-3 version. In the adverse-pressure-gradient boundary layer one 
begins to see an advantage to carrying a transport model for -uu. Figure 5 shows 
results for the friction coefficient and displacement thickness in the Samuel & Joubert 
(1974) experiment on a boundary layer developing into an increasingly adverse 
pressure gradient. The friction coefficient is based on the upstream reference velocity 
and the displacement thickness is normalized on its value at the first measurement 
location; at that location R,  = 4992. x-x, is distance in metres downstream of the 
first measurement point. The data plotted in figure 5 come from table 1 of Samuel & 
Joubert. In Durbin (1992) it was found that the k-e-3 version gave excellent 
agreement with the skin-friction data. The displacement thickness was predicted very 
well for most of the range of x, but at the last measurement point it had risen above 
the data: where 6,/6,0 in the data is just below 6,  the model was just below 7. The 
significance of this is that it suggests that the simpler model would lead to early 
separation. With the full Reynolds stress model one sees that the displacement 
thickness is in excellent agreement with the data (figure 5). The skin friction is only a 
bit low at the last measurement point. 

The two mean velocity profiles provided by figure 8 of Samuel & Joubert (1974) were 

- 
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FIGURE 5. Friction coefficient (0) and displacement thickness ( x )  versus downstream distance 

for the Samuel & Joubert experiment. 
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FIGURE 6 .  Mean velocity profiles at stations 9 (0)  and 12 (A) of the Samuel & Joubert 
adverse-pressure-gradient boundary layer. Model predictions : -, station 9; ---, station 12. 

transcribed, and are shown here, along with model predictions, in figure 6. Station 9 
is at x-x, = 1.87 m, and is well into the adverse-pressure-gradient region. Station 12 
is the last measurement point, at x-x, = 2.55 m. The model predicts the evolution of 
the mean flow reasonably well, although the shear is a bit low near the surface at 
station 12. The central portion of the profiles shows the characteristic adverse-pressure- 
gradient form, with a large wake defect and a nearly linear shear. 
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FIGURE 7. Reynolds shear stress profiles at stations T1 ( x , -), T4 (A, - - - -) and 
T6 ( + , - . - - -) of Samuel & Joubert. 

Reynolds shear stress profiles were transcribed from figure 13 of Samuel & Joubert 
and are presented along with model results in figure 7. The measurement stations are : 
T1, x - x o  = 0.19 m; T4, x - x o  = 1.53 m; T6, x - x o  = 2.54 m. The qualitative 
evolution of the profiles in the region near the wall is reproduced well by the model. 
The tendency for the maximum stress to move to the middle of the layer by station T6 
is also reproduced. The most glaring discrepancy between model and data occurs in the 
outer half of the boundary layer at station T1. Here the model is well above the data. 
At station TI the pressure gradient has had a small effect on the boundary layer, which 
is still similar to a zero-pressure-gradient layer. Indeed the over prediction of -uV here 
is similar to that shown by figure 4 for the outer region of the zero-pressure-gradient 
layer. This would seem to be one of the many difficulties that closure models have with 
the outer part of boundary layers. That part of the layer is the intermittent region, in 
which irrotational fluctuations play a significant role. Fortunately, it is also a region 
of small mean shear, so most transport properties of the boundary layer can be 
predicted reasonably well despite the poor representation of the outermost regions. 

The ‘universal’ law of the wall is a constant-stress layer, with logarithmic mean 
velocity and constant Reynolds stresses. This is the form invoked in the wall-function 
method. Figure 7 shows clearly that the near-wall region of adverse-pressure-gradient 
boundary layers can depart substantially from a constant-stress layer. In fact, the 
profile at T6 has nearly a linear stress layer. It is rather gratifying that the present 
model can compute this type of non-universal wall layer. 

The results for the Samuel & Joubert boundary layer indicate that the full Reynolds 
stress model may have significant advantages in a boundary layer subject to a large 
pressure rise. The Schubauer & Spangenberg (1960) experiment provides data for such 
a case. These data are tabulated in Coles & Hirst (1968). In the experiment, a boundary 
layer developed in zero pressure gradient to an R, of 4016, at which point an adverse 
pressure gradient was applied. The flow developed downstream past separation. The 
last measurement point was just upstream of the region where dust released at the 
surface showed evidence of backflow. Figures 8 and 9 show friction coefficient and 
displacement thickness for the Schubauer & Spangenberg experiment B. The friction 
coefficient in the figures is based on the local free-stream velocity, while 6, is again 
normalized by its initial value. 
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FIGURE 8. Friction coefficient (0) and displacement thickness ( x )  from Schubauer & 
Spangenberg. The predictions are by the simplified k-e-v2 version. Premature separation is indicated 
at x-xo = 2.7. 

In figure 8 the data are compared to the k-e-3 version of the model. In that version 
only the k-e and u”-+zzZz systems of equations are solved, while -uU is modelled by the 
eddy viscosity formula C,v2Ta, U, with T as in (6). Figure 8 shows more obviously the 
failure of the eddy-viscosity approximation that was beginning to emerge at the last 
measurement point of the Samuel & Joubert experiment : the displacement thickness is 
growing too rapidly, and separation occurs prematurely. In this case, the boundary- 
layer code blew up at an x-x, of about 2.7 m, where the friction velocity seemed to 
go to zero. In the experiments back flow was observed downstream of 3m. We 
expected that the early separation was in large part due to the use by the k-e-3 
version of an eddy viscosity in the mean momentum equation. The eddy-viscosity 
approximation corresponds to an equilibrium assumption for the Reynolds shear 
stress; such an assumption fails when the upstream history of stress evolution strongly 
affects its downstream behaviour. This rationalization for the failure of the mean 
momentum eddy viscosity was one motivation for exploring the full Reynolds stress 
version of our model. 

The full Reynolds stress version did not have the difficulty of the simpler eddy 
viscosity version. In figure 9 it is shown how this model does a better job of predicting 
the variation of displacement thickness and skin friction. The friction coefficient still 
drops below the data, but it does not go to zero. At the last measurement point the 
experimental friction coefficient is somewhat questionable : it was inferred by 
Schubauer & Spangenberg (1960) from a Clauser plot, which relies on a well-developed 
logarithmic region. In fact the mean flow profile at that location seemed to have a 
limited contact with the logarithmic line, and such contact would be forced by the 
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FIGURE 9. The same data as in figure 8 are compared to the full Reynolds stress version of the model. 
The behaviour in the region of small skin friction is predicted more accurately than by the simplified 
version. 

method of determining u*. Schubauer & Spangenberg expressed some consternation 
that their C, was not heading towards zero as the separation was approached; this 
could have been due to their use of the Clauser plot. 

Figure 10 shows comparisons of mean velocity profiles to measurements at various 
downstream positions. The agreement is reasonable, although the location farthest 
downstream shows significant discrepancies near the top of the boundary layer. 
Broadly speaking, the transition from a zero pressure gradient to an adverse pressure 
gradient form of mean flow profile is described correctly by the model. 

The solution for the Reynolds stress components showed how they respond to an 
applied adverse pressure gradient. Figure 11 shows the model's prediction for the 
evolution of the kinetic energy profile with downstream distance in the Schubauer & 
Spangenberg experiment. Qualitatively, this is similar to the evolution observed by 
Samuel & Joubert (1974): the near-wall peak in the upstream profiles is reduced in 
magnitude, and moved toward the wall by the adverse pressure gradient; downstream 
the near-surface peak has been suppressed and the maximum kinetic energy occurs in 
the middle of the boundary layer. The shapes of the downstream profiles as a function 
of y/6, ,  are far from those of a zero-pressure-gradient boundary layer. These 
distributions of turbulent intensity determine transport properties and the evolution of 
the flow: for this reason, we suspect that a second-order closure must have the 
flexibility to predict these dramatic changes of the turbulence statistics if it is to cope 
with non-equilibrium flow. Indeed, the primary motivation for developing a near-wall 
model, rather than simply prescribing universal wall functions, is the desire to compute 
flows in which the wall region is not universal. 
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FIGURE 10. Mean velocity profiles computed by the full Reynolds stress model for the Schubauer & 
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FiGURE 11. Profiles of turbulent kinetic energy at x = 0 (solid), 1.016 m (dashed), 2.032 m (dotted) 
and 3.048 m (dash-dot) in the Schubauer & Spangenberg boundary layer, as computed by the present 
model. 

5. The boundary layer on a convexly curved surface 
The present model is coordinate-system independent. This means that the empirical 

constants can be obtained from data on a simple flow, in the present case two- 
dimensional plane channel flow, while the model can be used in a wide range of flows. 
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For non-planar cases, curvilinear coordinates can be adopted. In this section results for 
a boundary layer on a convexly curved wall are presented. 

The governing equations (l), (8), (12), (13) and the mean momentum and continuity 
equations can be transformed to curvilinear coordinates by techniques of classical 
differential geometry (McConnell 1957), as discussed in Appendix B. The equations are 
used in their two-dimensional boundary-layer approximation. Additionally, some 
0(6/Rc) terms will be dropped from the turbulent transport of Reynolds stress. These 
terms are described in Appendix B : formally they can be omitted in the limit S/R, < 1 
with GU,/R,u, of O(1). Computations were done with these terms included and 
found numerically to be extremely close to other computations in which they were 
omitted. Their omission simplifies the presentation of equations. With this sim- 
plification, the curvature terms assume a rather obvious form. The equations are in 
local plane polar coordinates: dy is the radial direction, normal to the wall, with 
y = 0 at the wall; dq5 is the tangential direction, but we will adopt the usual surface 
coordinate dx = R, dq5 (Johnston 1978). With these definitions, terms which would be 
l / r  in polar coordinates become l/ua, in the present equations, where u = 1 +y/R,. 

5.1. Meanflow 

With the boundary-layer approximation the equations of the mean flow are 

_ -  
u2 u2-v2 -+-= a,(8 + iF), aR, aR, 

a, u+ v) = 0, 

(19) i 
where U is the $-component of velocity and V is the r-component, in polar coordinates. 
A term v( U/uR, - a, U)/aRc was dropped from the U-equation because viscous terms 
are significant only in a wall layer, in which curvature is insignificant. 3 can be 
absorbed into the definition of 9 since the extra term which this produces in the x- 
momentum equation is negligible in the boundary-layer approximation ; hence 2 can 
be eliminated from the right-hand side of the y-momentum equation by redefining 8. 
Also, the turbulent term on the left-hand side of this equation is small compared to the 
mean flow term and will be dropped. 

Continuity is satisfied by introducing a stream function, such that 

u=a,v; uv=-axy. (20) 
If the independent variables in (19) are changed from x and y to x and Y then the 
simpler form 

I Ua,U= - a , ~ + v a ~ U - a , ( u ~ ) - U V / R c ,  
U2/aR, = a,B 

emerges. Note that this is just a change of variables; the velocity components are still 
referred to plane polar coordinates. The x-derivatives in (21) are at constant Y, and 8, 
is understood to mean Ua,. Equations (21) were used for numerical computations. In 
those computations an expanding grid was introduced by further changing the 
independent variable to 7 = Y/ Ygg where Ygg is a function of x defined as the location 
where U = 0.99U,. Y9, was found by solving the equation U(y = 1) = 0.99Um in 
conjunction with (21). The boundary conditions are U = 0 at y = 0 and a, U-t - l/uR, 
as y +  co. The latter condition is compatible with (21) in the free stream, where viscous 
and Reynolds stresses are negligible. 
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5.2. Reynolds stress model 
In polar coordinates, with the independent variables changed to Y and x, the equations 
(1) for the Reynolds stresses transform to 

Some terms that are 0(8 /Rc)  smaller than those included in (22) have been dropped 
from the turbulent transport model - as discussed in Appendix B. They were indeed 
found to be numerically small. 

The components of the Reynolds stress production tensor are 

P,, = -2uua, u, P,, = P,, = -Pav (23) 

P = -=a, U + Z U / a R ,  is the rate of turbulent kinetic energy production, equal to 
one-half the trace of ej. The elliptic model (8)  for biii becomes 

and biij = kfij.  The left-hand side is the elliptic relaxation operator L2V2f,-j& 
expressed in polar coordinates, with x-derivatives neglected by the boundary-layer 
approximation. & is defined in Appendix B: its only non-zero components are 
y:2 = - y;l = l / aR , .  Actually, the last two terms inside the big parenthesis are of 
relative order (c?/R,)~ and can safely be omitted. The k--E system is essentially as in (12) 
and (13) ,  with the turbulent transport terms replaced by 1 /a a&. . .), as in (22). 

5 .3 .  Results 
The baseline experiment in Gillis et ul. (1980) and Simon et ul. (1982) is a boundary 
layer in zero pressure gradient throughout, which develops on an upstream flat plate 
to a momentum-thickness Reynolds number R,  = 4200; it then enters a 90" constant- 
curvature bend, from which it exits into another flat-plate section. At the start of 
curvature the ratio of boundary-layer thickness to surface radius of curvature is 
SIR, = 0.1. In order to maintain zero surface pressure gradient on the curved section 
the wall opposite to the test surface was flared out near the start of curvature and flared 
in near its end. The care taken to isolate convex curvature from pressure gradient 
effects distinguishes these experiments from others in the field. 

The present numerical computations are of the Gillis & Simon baseline experiments. 
A flat-plate boundary layer was computed by initializing the profiles with Spalart's 
(1988) DNS data at R ,  = 670, then integrating the model downstream to R,  = 4200. 
It was shown in figure 3 that the model gives a good representation of the Reynolds- 
number dependence of zero-pressure-gradient flat-plate boundary layers, so this is a 
satisfactory initialization procedure. Curvature was then introduced abruptly by 
setting R,  = 108. Although this causes a discontinuity, its effect dies away very quickly. 
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FIGURE 12. Solid line is computed skin friction, normalized on its value at the start of curvature; 
dashed line is normalized skin friction computed for a flat-plate boundary layer. Experimental data 
on skin friction ( x )  from Gillis et al. and surface heat flux (@) from Simon et al. 

A computation was done in which curvature was introduced more gradually and the 
results were found to be essentially the same as for the abrupt case. In the experiments 
the 90" bend was 0.7 m long and the unit Reynolds number was 9.87 x lo5 m-l. This 
unit Reynolds number was used to convert the numerical downstream coordinate to 
metres. The curvature was set to zero at x = 0.7 m in the numerical solution and the 
computation continued into the downstream recovery region. 

Figure 12 shows the skin friction, normalized on its value at the start of curvature. 
Experimental data on skin friction from Gillis et al. (1980) and surface heat flux from 
Simon et al. (1982) are included in the figure; both are normalized by their value at the 
start of curvature. The weak Reynolds' analogy is that skin-friction and heat-transfer 
coefficients are proportional to one another: on the basis of this analogy, the above 
normalization should make the skin-friction and heat-flux data comparable. The 
motive for including the heat-transfer data is that it was measured directly, while the 
skin friction was only inferred by fitting measured mean velocity profiles to a universal 
log-law. In the curved section there is no constant-stress layer, and hence no theoretical 
basis for assuming the universal log-law to exist. The agreement between the data sets 
in figure 1 suggests that the skin-friction measurements are largely reliable. However, 
Bandyopadhyay & Ahmed (1 993) found unambiguous departure from the universal 
low-law in a curved-wall boundary layer (0.04 < 6 / R ,  < 0.14), and that log-law 
estimates of skin friction were erroneous. 

The dashed line in figure 12 is the normalized skin friction computed for a flat-plate 
boundary layer; the solid line is the solution for the curved wall. Both the model and 
data show an abrupt drop in skin friction at the onset of curvature. By the end of the 
curved section, at x = 0.7 m, the skin friction is nearly one half its level at the start of 
curvature (x = 0). After the curved section the skin friction recovers toward its flat- 
plate level. Both the Simon et al. data and the model show an immediate, abrupt 
response at the end of curvature, but the model solution continues to rise, asymptoting 
toward the dashed line. The experimental data level out after the initial rise and show 
little tendency to approach the unperturbed flat-plate level. It was noted by Gillis that 
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FIGURE 13. Dependence of skin friction versus x on curvature and Reynolds number. ---, R, = 

R, = 8400, SIR, = 0.2. ..., flat wall. 

a secondary flow was present downstream of the curve, despite significant efforts to 
eliminate it; it is possible that this secondary flow slows the recovery process. The 
experiment of Alving, Smits & Watmuff (1990) showed a clear recovery to equilibrium 
following a curved section. Their experiment was at a higher Reynolds number and 
contained significant streamwise pressure gradients. 

The fact that the model recovers toward the flat-plate solution is inevitable: the 
present type of turbulence model is formulated to produce parabolic relaxation with 
downstream distance toward an equilibrium flow. Despite the quantitative dis- 
crepancies in the recovery region, it is significant that the model reproduces the prompt 
response at the onset of curvature and the far more gradual recovery downstream. The 
experimenters attributed the slow recovery to a reorganization by curvature of the 
turbulent eddy structure. However, the present single-point Reynolds stress model 
contains no obvious representation of eddy structure, yet it produces the same 
asymmetric response observed experimentally. It would seem that the timescale that 
enters the parabolic, eddy diffusive, relaxation process controls the rate of recovery, 
while the timescales associated with mean shear and curvature control the initial 
response. The asymmetry in the model response then would reflect the disparity 
between inertial and (eddy) viscous timescales, rather than structural reorganization 
per se. A corollary to these remarks is that overprediction of the rate of recovery from 
curvature is due to inadequacies in the gradient transport model for turbulent self- 
diffusion. 

Simon et al. (1982) also measured the Stanton number (St  E Q,,,/pC, Um(Twall- 
T,)) in a boundary layer with SIR, = 0.05. They found that the Stanton number 
versus x curve was changed very little from that displayed by figure 12. From 
this they concluded that strong curvature organizes the boundary layer such that it 
becomes insensitive to the precise level of curvature. However, a caveat must be made 
about that conclusion: to produce a lower value of 6 /R ,  in the apparatus used by 
Simon et al. it was necessary to lower the Reynolds number at the start of the curved 
section; the 6/R,  = 0.05 case had R ,  = 1900. Figure 13 shows model Cfcomputations 
at R,  = 1900 with 6/R,  = 0.05 at the start of curvature, along with solutions at 
R, = 4200 and 6/R, = 0.1. The model solution concurs with Simon et al.’s finding that 
these two cases have nearly equal St versus x profiles. The figure also contains solutions 

1900, 6/R, = 0.05. R, = 4200: ---, 6/Rc = 0.025; ---, 6/R, = 0.05; -, 6/Rc = 0.1. -. .-, 
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FIGURE 14. Model solutions and experimental data on -iiij/U&. The profiles are at x = -0.062 m 
(0, -), x = 0.162 m ( x  ,---)and x = 1.124 m (A, -.-.- ). These stations are upstream of the 
bend, 20.6" around the bend and in the downstream recovery region. 

at R, = 4200 with SIR, = 0.05 and 0.025, and at R, = 8400 with SIR, = 0.2. Clearly, 
at fixed Reynolds number the Stanton number is sensitive to the level of curvature, 
contrary to Simon et al.3 inference. The present results do not support the conclusion 
that curvature organizes the boundary-layer turbulence so that C, becomes insensitive 
to SIR,. Bandyopadhyay & Ahmed (1993) proposed that the Reynolds number based 
on radius of curvature (u* RJv)  was a controlling parameter. The cases of R, = 1900, 
S/R, = 0.05, R, = 4200, 6/R, = 0.1 and R, = 8400, 6 /R ,  = 0.2 have similar curvature 
Reynolds numbers, so the agreement between the C, curves of these cases is consistent 
with the proposal by Bandyopadhyay & Ahmed. 

When the skin friction drops, less mean momentum is being transported from the 
free stream to the surface. Immediately next to the surface the transport is accomplished 
by molecular viscosity, but in the bulk of the boundary layer it is carried by the 
Reynolds shear stress. Hence, the reduction in skin friction should have its counterpart 
in a reduced Reynolds shear stress. Figure 14 contains model solutions and 
experimental data on -w. They are normalized by Up, = limg+m (aU); this velocity 
is the extrapolation of the potential flow outside the boundary layer to the wall (Gillis 
et al. 1980). Up,  is constant around the bend (15 m/s in the baseline experiments). The 
profiles in figure 14 are at x = -0.062 m, 0.162 m and 1.124 m. These stations are 
upstream of the bend, 20.6" around the bend and in the downstream recovery region. 
The profile within the curved section shows how curvature suppresses Reynolds stress 
in the outer region to the extent that it drives -Z negative; the mean shear is positive 
throughout the boundary layer, so the region of negative -uV could be described as 
a region of 'counter-gradient ' transport. Of course, the gradient transport ap- 
proximation was not used in the mean momentum equation; indeed, the failure of 
gradient transport in strongly curved flow provides one of many motivations for the 
present Reynolds stress modelling. The suppression of Reynolds shear stress by 
curvature was first measured by So & Mellor (1973). Like Gillis et al. they concluded 
that the stress in the outer part of the boundary layer was quenched by the centrifugal 
stabilization. 

The profile in figure 14 downstream of the bend (dash-dot line) shows how the stress 
recovers first near the wall and then this recovery propagates out across the boundary 

- 



A Reynolds stress model for  near-wall turbulence 

8 1  

487 

Y/SW 
FIGURE 15. The kinetic energy, at the same locations as in figure 14. 

layer; Alving et al. (1990) referred to this as a ‘stress bore’. The model shows more 
rapid recovery than the experimental data, as was already seen in figure 1 ; however, 
the qualitative features of the model solution are remarkably similar to those of the 
data. 

In the neighbourhood of the wall the profile at x = 0.162 m, within the bend, is in 
good agreement with data, but in the outer region the tendency for -E to go negative 
is exaggerated by the model. The negative shear stress causes negative energy 
production in this region and this reduces the turbulent kinetic energy. The kinetic 
energy, at the same locations as in figure 14, is plotted in figure 15. The kinetic energy 
drops below the data in the curved section, consistently with the excessive negative 
production, but shows the same qualitative features as the data. Recovery again is in 
the form of a ‘bore’ propagating away from the wall. The tendency for the energy 
profile to develop a flat plateau, which is shown in Gillis’ data, and was noted by him, 
is less pronounced in the model solution. 

The origin of the negative Reynolds shear stress was investigated by plotting the -uV 
budget. In the flat, upstream section the balance in the outer part of the layer is 
predominantly between shear production and redistribution ; the redistribution is 
negative everywhere in that region and nearly equal and opposite to shear production. 
A stress budget just after the start of the curved section is contained in figure 16. Shear 
production (?a, U )  is the chain-dot curve and the chain dash curve is the sum of the 
redistribution term (-#J and Z / T :  this can be regarded as the sum of redistribution 
and anisotropic dissipation. The peaks of these curves overflow the plotting limit, 
showing that in the neighbourhood of these peaks the dominant balance is still between 
shear production and redistribution. The curvature production ( - g U / R ,  a ;  dashed 
line) is significant near the wall, but it becomes predominant in the outer portion of the 
boundary layer. It counteracts the shear production, thereby suppressing - E: the 
solid line is Dt( -E) and shows that -uV is decreasing with downstream distance. (NB, 
the signs in figure 16 are such that the segmented curves sum to the solid curve.) The 
suppression of -uV in the outer region occurs because the shear production falls off 
more rapidly with increasing y than the (negative) curvature production; the latter 
thereby becomes dominant when y > 0.36,,. It is curious that the redistribution 
actually becomes slightly positive in the outermost part of the layer and assists shear 
production in balancing the negative curvature production. Transport (dotted line), 
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FIGURE 16. Reynolds shear stress budget just after the start of the curved section. Shear production 
(vz &U),  -.-; .redistribution plus dissipation (h2 +iiij/T), ---; production by curvature 
(- u2U/Rc a), ---; D,( --uv), -; sum of molecular and turbulent transport, . . . . 
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FIGURE 17. Mean velocity profiles upstream, in a bend and downstream. x = -0.413 m 
(0;  -); x = 0.162 m ( x  ; ---)* , x = 1.124 m (A; --.-). See figures 14 and 15. 

which is a combination of molecular and turbulent contributions, is significant only 
near the wall. 

Mean velocity profiles are shown in figure 17. The upstream profile is at x = 
-0.413 m, rather than the location of figures 14 and 15, because this was the last 
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station upstream of curvature at which the mean flow was measured. The other 
locations are the same as in figures 14 and 15. The velocity is normalized by its level 
at the top of the boundary layer, which is the free-stream velocity in the flat sections. 
The model is showing an alteration of the profile within the curved section, while the 
data show the profile there to have the same form as upstream. It is not clear why the 
data show no effect of curvature on the velocity profile. In the downstream recovery 
region the mean flow profile is less full than an equilibrium flat-plate profile. This 
feature is present in both model and data, but again the model is showing a more rapid 
recovery toward equilibrium. 

6. Heat flux modelling 
The curved-wall boundary layer is a useful flow in which to consider heat flux 

modelling. The a- and 8-components are intimately coupled by the curvature. In a 
flat-plate boundary layer 27 is much bigger than 3, but it plays no role in the mean 
heat transfer from a uniformly heated surface. 

The mean temperature is the solution to 

ua,o+ va,o = - a i i p K v 2 @ .  (25) 

The exact heat-flux equation in Cartesian coordinates is 

ua, iip + va, Q = -ii& a, o -i$ aj ui + fi8t + ;(K + V )  v2iQ - aj U j  Ui 8, (26) 

where -Qa, U, is the production from mean shear and --aj 0 is the production 
from mean temperature gradient. 

(27) 

is analogous to the redistribution term in the Reynolds stress transport equations (1). 
Of course the trace of p8, is not zero, and here the term should not be understood to 
redistribute heat flux. 

The elliptic relaxation model (8) was devised primarily to represent kinematic 
blocking by boundaries (Durbin 1991). Its most pronounced effect is to suppress v" 
near the surface. The effect on the mean momentum flux, -uV, is much smaller; indeed 
it is shown in Durbin (1991, 1992) that an equilibrium, eddy-viscosity model will often 
be satisfactory for -uV, provided that the eddy viscosity is formed from 3 and that 
kinematic blocking is accounted for in the 3-model. One expects that similar 
considerations apply to the heat flux: once the kinematic blocking of 3 has been 
included, the heat flux model can be of the usual quasi-homogeneous type. Actually, 
some calculations were done with an elliptic model for poi, but the results were very 
little different form the simpler model to be described. The principal drawback to the 
quasi-homogeneous formulation is that it precludes satisfaction of the correct 
boundary conditions on Q at the wall. 

The last term of (26) represents turbulent transport. We adopt the usual gradient 
transport model : 

-- 
ps, = - (1 / p ) ~ -  (K+ V )  a, Ub ai B +;(K- V )  aj(tti aj e- e aj ui) 

Following Launder (1989), uo = 1.5. 
The technique of invariant closure modelling could be used to write the most general 

closure for b8,. This was done by Dakos & Gibson (1987) and need not be repeated 
here. In fact, we will simply adopt an analogy to (1 1) for our heat-flux model: is 
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FIGURE 18. Stanton number vs. momentum-thickness Reynolds number in a 
zero-pressure-gradient boundary layer. Data from Reynolds et al. ( I  958). 

written as the sum of a return to isotropy term and ‘isotropization’ of production 
terms, 

hoi = - ( C , , s / k ) u , e + C , z u i a , o ~ c o B u j e ~  ui. (29) 

The constants of the model (29) were determined by the following considerations. 

obtains the eddy diffusion formula 
(i) By dropping the transport terms from (26), in a flat-plate boundary layer one 

where T = k /e .  This is the k-e-?’ model (Durbin 1991). Comparing this to vT,, in ( 5 ) ,  
one finds the turbulent Prandtl number ( v ~ / K ~ )  to be 

Pr, = c, G31/(1 - GZ). (30) 

The present value of Cpa is 0.23 and for turbulent boundary layers in air Pr, z 1. Hence 
(30) imposes the condition that C8,/( 1 - c@,) x 4; computations of flat-plate boundary- 
layer heat transfer are relatively insensitive to the precise values of Co, and Co, as long 
as this ratio is near 4. Figure 18 shows a computation of Stanton number versus 
momentum-thickness Reynolds number in a zero-pressure-gradient boundary layer 
with the present values of C8, = 2.5 and C,, = 0.45. The agreement with the data from 
Reynolds, Kays & n i n e  (1958) is quite good. 

(ii) In principle data on 2 in flat-plate boundary layers could be used to determine 
C8,. In practice those data are somewhat unreliable, but can be used as a rough guide. 
In figure 19 the data of Subramanian & Antonia (1981) are shown along with model 
solutions with c@, = 0. The data band is not due to experimental scatter, but represents 
the range of measured Z as the Reynolds number was varied from 990 to 7100; no 
consistent trend with Reynolds number was found in the experiments. The model 
agrees with the data when R, = 1000, but shows Reynolds-number dependence. The 
model’s Reynolds-number dependence is as might be expected, and indeed is what 
Subramanian & Antonia found for 2 and g :  as R, increases, the peak moves toward 
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FIGURE 20. Variation of the model solution with Co, at R, = 1000. Co8 = 0 -; 
c = 0.2-.--. c = 0.4 ---. 
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the wall and a knee develops in the log-layer. Because the Z9-correlation coefficient is 
approximately constant and equal to 0.8, and because both u’ and 8’ profiles develop 
the near-wall peak and knee, the data on 2 are rather inexplicable. If Co, is increased 
above zero a decreases but retains the same R, dependence as in figure 19. The 
variation of the model solution with Co3 is illustrated in figure 20 in which the solid, 
dash-dot and dashed lines are for Co, = 0, 0.2 and 0.4, respectively and R, = 1000; 
Cos.= 0 seem to give the most satisfactory agreement to the data. 

(111) As a further estimate of the constants, the model equations can be solved for 
homogeneously shear turbulence. In this case Reynolds stresses eventually grow 
exponentially with time, t as eYYt where Y is the rate of shear and y is a constant. The 
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ratios of Reynolds stresses reach constant values at large Y t .  When the present heat- 
flux model is solved for homogeneous shear, with a uniform mean temperature 
gradient in the direction of shear, one finds 

in the exponentially growing regime. This provides a relation between C, and C, if 
experimental values are given to all other quantities. Tavoularis & Karnik (1989, table 
2) summarize various experiments on homogeneously sheared turbulence. Equating t 
to x / U ,  in the experiments allows one to estimate the parameters in (31). An average 
of the high-shear experiments gives y = 0.10+0.016, where the f is the standard 
deviation of the tabulated values. The table also gives Y T  = 4.1 i- 0.5 and - E / k  = 
0.32f0.02, p/k  = 0.44f0.04 are cited. Substituting these values into (31) with C ,  = 
2.5 and Co, = 0 gives 2.14 for the right-hand side. Tavoularis & Corrsin (1981, table 4) 
give 2.11, 2.17 and 2.22 for -uO/ur9 at three successive downstream locations. 
Although these do not indicate a clear self-preserving flux ratio, they indicate that the 
present model constants are roughly in agreement with the data. 

Summarizing, the model constants have been determined as follows: the con- 
siderations under (ii) suggest C,, = 0; the considerations under (iii) then give C,, = 2.5; 
and finally the considerations under (i) imply Co, = 0.45. In fact, leeway exists in the 
estimation of these constants. The present values were also selected on the basis of the 
curved-wall heat-transfer measurements. 

-- 

The mean temperature equation in polar coordinates (and Y - x variables) is 

ua, o = a; o - aY(GB) (32) 

and with the heat-transfer model, (26) becomes 

by analogy with (21) and (22). Figure 21 shows a computation, similar to figure 12, of 
St/St, versus R, compared to the data from Simon et al. (1982). In the curved section 
the model agrees with the data. In the downstream region the model again predicts too 
rapid recovery. The recovery of St in figure 21 is slightly faster than the recovery of C, 
in figure 12. This is in part because the return to isotropy timescale is T/C, in (29) and 
TIC, in (1 1). Because Co, = 2.5 and C, = 1.22 the timescale is shorter for the heat-flux 
equation. It might be noted that 2.5 is on the low side of values typically used for C,, 
(Launder 1978). 

6.1, Discussion of heat-flux model 
The model (29) is a commonly used form; however, it is usual to omit the term with 
coefficient C,, and choose C, > 0 (Launder 1989). The reasoning behind this is based 
on separating eaiP into ‘rlpid’ and ‘slow’ parts. The present approach is more 
heuristic and is based primarily on considerations (i)-(iii) above. The use of (i) is 
certainly troubling because Pr, w 1 is only suitable for boundary layers, so it is likely 
that Co, or C would have to vary with flow conditions. At present we are unaware of 
a more soud? approach to heat flux modelling. 
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FIGURE 21. Solid line is Stanton number, normalized on its value at the start of curvature; dashed 
line is normalized Stanton number computed for a flat-plate boundary layer. Data from Simon 
et al. (a). 

A further source for some dissatisfaction with the present heat-flux model is that it 
does not enable boundary conditions to be satisfied. It has already been explained that 
the representation of kinematic blocking of 3 largely ameliorates this shortcoming; 
but it could, under some circumstances, be cause for concern. 

The small-y behaviour of the present Reynolds stress model is analysed in Durbin 
(1991). That reference shows how the elliptic relaxation model enables boundary 
conditions on the components of the Reynolds stress tensor to be satisfied. As y + 0 in 
the heat-flux balance (26), the diffusion and dissipation terms become dominant. The 
dissipation terms are incorporated into +if$. Substituting the behaviour k + ey2/2u into 
(26) and (29), the balance between diffusion and dissipation becomes 

The non-singular solution to this is u,B = A, yn + 0 ( y 3 )  where 

This equals 2.6 for Col = 2.5 and V / K  = 0.71. The exact behaviour of Q near a 
constant-temperature boundary is 2 a y 2  and 3 cc y 3 ;  next to a constant-heat flux 
boundary 2 a y and Z cc y2. The limiting behaviour as y+ 0 of the present model 
is not far from correct for boundary layers in air. It is noted in Durbin (1991) that the 
model equations would probably have to be made fourth order to satisfy the exact 
boundary conditions. 

7. Discussion 
The present model was formulated as a coordinate-system-invariant set of equations 

for the turbulent Reynolds stress tensor. These equations were solved with boundary 
conditions applied at the surface. Profiles of mean flow and of turbulence statistics were 
computed directly, by solving the governing equations. Arbitrary functions of y, 
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and/or of the turbulence Reynolds number were not used to modify these solutions, 
or to damp the pressure-strain term; nor were source terms interior to the fluid made 
to depend on the unit wall normal. Reynolds-number dependence arose naturally from 
the exact viscous terms ; no additional explicit Reynolds-number dependence was 
introduced into model constants. In all these respects the present model differs from 
previous near-wall second-order closure models. 

Empiricism enters the model only through a small set of constants : in this respect the 
present formulation is in the spirit of previous models for homogeneous turbulence and 
free-shear flows. The ability to make use of empiricism in this manner is a necessary 
and desirable property of turbulence models. The models present an extremely 
simplified view of turbulence physics, but can make useful predictions by relying on a 
limited amount of simple and reliable experimental data. 

Some of the present model constants have been set to widely used values; others were 
chosen by comparing the model to data and making adjustments - in the present case 
the DNS channel flow at R, = 395 was used for this purpose. However, the shapes of 
profiles in figure 1 are produced by properties of the equations, the model constants 
could be chosen to produce only a few points of quantitative agreement. After the 
constants were selected on the basis of the channel flow comparison, no further 
adjustments were made. 

The values of the empirical constants, and other aspects of the model, are clearly 
tailored to the problem of near-wall flow. However, away from surfaces the present 
model reduces to a standard quasi-homogeneous form; we have used the Rotta return 
to isotropy plus isotropization of production formulae, but any similar model could 
have been used. 

The strong non-homogeneity of the near-wall region was modelled by the elliptic 
relaxation equation. This model was motivated by the need to represent non-local 
effects of the boundary. The computations of zero-pressure-gradient, adverse-pressure- 
gradient, and convexly curved boundary layers provide an assessment of the model; 
the focus in that assessment is on the near-wall portion of the boundary layers. The 
ability of the model to predict the experimental data was quite satisfactory. For 
example, the skin-friction, displacement-thickness and near-wall behaviour of 
Reynolds shear stress were predicted quite well for the Samuel & Joubert (1974) 
experiment. Rodi & Scheurer (1986), and others, have shown how damping-function 
models are unable to predict this flow. 

The most serious deficiency found in the present comparisons was an overprediction 
of the rate of recovery from convex curvature. This error in the rate of relaxation from 
perturbation occurs in other situations, such as the recovery from a strong adverse 
pressure gradient in a downstream region of zero pressure gradient. It seems that this 
deficiency is associated with inadequacies in the gradient diffusion representation of 
turbulent self-transport. 

I am grateful to Professor P. Moin for his comments on the manuscript. 

Appendix A. Rationalization for the elliptic relaxation equation 
Justifications for the elliptic model were given by Durbin (1991). Here we will 

paraphrase one such justification. Consider the Poisson equation for the ‘rapid 
pressure ’ : 

vzp = - 2p a, u, a, u,. (A 1) 
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1 ai uj (x / )  aj ui(x/) 
Its free-space solution is = - J dx’. 

P 27c Ix - X’I 

The pressure-velocity gradient correlation is then 

The usual quasi-homogeneous approximation involves taking ai Uj outside the integral. 
Near the wall this term varies rapidly and the quasi-homogeneous approximation is 
erroneous (Bradshaw et al. 1987). An alternative is needed. Suppose instead that the 
two-point correlation can be represented by an exponential : 

aj  u ~ ( x ’ )  a, ul (x) = a, U, a, U~ ( x i )  e-lx-x’l/L. 
Then (A 3) becomes 

This is the solution to 

which is a template for the present elliptic relaxation equation (8). Note that in practice 
the exponential correlation and l / r  free-space Green’s function are not used; rather, 
the elliptic equation is solved with suitable boundary conditions and variable L. 

Appendix B. Transformation of equations to curvilinear coordinates 
This appendix explains the method for transforming the model equations to 

curvilinear coordinates. The transformation was performed ab initio on the model 
equations to assure that the model used here is identical for the planar and curvilinear 
boundary layers. 

The turbulence model is in a tensorally consistent form. To make it coordinate- 
system independent, one need only recognize the velocity as a contravariant tensor and 
derivatives as covariant. The equations can then be written in any coordinate system 
by using differential geometry (McConnell 1957) to project the equations onto the local 
coordinate directions. It is common practice to rewrite the transformed equations in 
terms of ‘physical components’ (Appendix to McConnell 1957). For instance, in plane 
polar coordinates, the covariant angular velocity is d$/dt while the physical component 
is rd$/dt, which has the dimensions of velocity. If kij] is the covariant metric tensor, 
then the physical components of a tensor are obtained by multiplying it by a factor & 
for each contravariant index, a, and dividing by Gfl for each covariant index, p. The 
convention here is that repeated Greek indices are not summed. Physical components 
are not tensors. All velocities and derivatives in this paper are considered to be physical 
components . 

The physical components of covariant derivatives are determined by adding a 
curvature term to a partial derivative: 

ux;j = aj u.i + Y;k u&y 

w;k = a,~+y~-~+y~~ my 

(B 1) 
where the semi-colon denotes covariant differentiation (transformed to physical 
components). Similarly, for a second-order tensor 

(B 2) 
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and so on for higher-order tensors. Operationally, transformation of equations from 
Cartesian to curvilinear coordinates simply requires consistent substitution of rules like 
(B 1) and (B 2) in place of partial derivatives. y& is determined as follows. The 
contravariant velocity is u,/gk (this is simply the inverse of the transformation to 
physical components). Similarly the covariant derivative of the contravariant velocity 
is g),(ua/g&);,. This is a tensor. According to the above prescription, the physical 
components of this tensor are (g,,/gpP)i times the tensor (it has one covariant index and 
one contravariant index). Hence 

The bracketed term is a tensor, so Ti6 is the usual Christoffel symbol (McConnelll957). 
Comparing (B 3) to (B 1) shows that 

y;,, is not symmetric in its subscripts, unlike Tiy: 
For an orthogonal coordinate system [ g] is diagonal, g,, = h: aa,. For example, in 

plane polar coordinates with dx, = r dg4 and dx, = dr, g,, = r2 and g,, = 1. (These g, 
are by definition the coefficients in the formula d12 = r2d@+dr2.) The physical 
components of the metric tensor are G ,  = g,,/(g,,gPP)'. For a diagonal metric Gap = 
aaP. Because [GI interconverts covariant and contravariant components, in orthogonal 
coordinates there is no need to distinguish covariant and contravariant physical 
components. 

McConnell (1957, appendix eq. 5)  gives formulae for qi in terms of hi (note, 
however, that our h are inverse to his because ours are defined by the covariant metric 
tensor, and his by the contravariant metric tensor). From these and (B 4) y;k. is zero if 
all i, j and k are all different or all the same, and if i and k are the same. The only non- 
zero components are 

(B 5) 
1 

a, h, 
=-yP =-a ha, 

a + p. For example, in plane polar coordinates y i2  = --Y;~ = l / r  and all other 
components are zero. 

The equations in the text were obtained by substituting physical components of 
covariant derivatives in place of the partial derivatives in the equations of 52, using 
rules like (B 1) and (B 2) to make the curvature terms explicit, then substituting (B 5) 
for the case of plane polar coordinates. The only omission of terms in the text is from 
the turbulent, eddy transport model - given that the equations are in boundary layer 
form. The exact model is (with crk = 1 for simplicity) 

(B 6) 

in which the boundary-layer approximation justifies ignoring x,-derivatives. For plane 
polar coordinates yin = SZn/r,  r being the x,-direction. Hence, the first two terms in 
(B 6) can be combined to ( 1 / r ) i 3 , ( r v T a , ~ , , > .  Equation (B 6) shows explicitly how the 

( v T k l u i ; l ) ; k .  = a2(J%,,Uc,,)+Y:n %Q&;,+YL2 % k , U , ; i + Y l n  +BzUi,l 
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outermost covariant derivative is expanded ; the same procedure must be repeated on 
the remaining derivatives. The net result is 

- - I  ” T I %  - - 
u”) + - ar(v2 - UZ) - r“ VT,, uv, 

r 

in component form. In the text all terms except the first in each equation were omitted : 
this was done on the grounds that the omitted term are small when (a/&) -g 1 .  
Numerical computations with these terms included showed them indeed to be small. 
Their omission simplified the formulation of a stable numerical scheme. 
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